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Lecture 32

• Parasitic Capacitances

• String DACs
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Basic R-String DAC including Logic to Control Switches

Review from Last Lecture



Nonideal Effects of Concern
• Matching

• Parasitic Capacitances 

(including  Charge injection)

• Loading

• Nonlinearities

• Previous code dependence

• Code-dependent settling

• Interconnect resistors

• Noise

• Slow and plagued by jitter

• Temperature Effects

• Aging

• Package stress

Review from Last Lecture



Data Converter Design Strategies
• There are many different DAC and ADC architectures that have been 

proposed and that are in widespread use today

• Almost all work perfectly if all components are ideal

• Most data converter design work involves identifying the contributors to 
nonideal performance and finding work-arounds to these problems

• Some architectures are more difficult to find work-arounds than others

• All contributors to nonidealities that are problematic  at a given 
resolution of speed level must be identified and mitigated

• The effects of not identifying nonidealities generally fall into one of two 
categories
– Matching-critical nonidealities (degrade yield)

– Component nonlinearities (degrade performance even if desired matching 
is present)

Review from Last Lecture



CGCH

Parasitic Capacitors in 

MOSFET
(initially assume saturation and consider  two:  Gate-channel and diffusion)

CBS
CBD

• Diffusion capacitances nonlinear (dependent upon voltage)

• Many more actually present

• Operating  region may affect parasitics

Review from Last Lecture



Size of Capacitances

Gate-Channel Capacitance = 6l2 x 2.47fF/m2 = 1.33fF

Source Diffusion-Substrate Capacitance = 

12l2 x .424fF/m2 + 14l x .315fF/m = 

.46fF + 1.32fF =1.78fF

Are these negligible?

Note Sidewall Capacitance larger than Bottom Capacitance

Review from Last Lecture



Identifying Problems/Challenges  and Clever/Viable Solutions
• Many problems occur repeatedly so should recognize when they occur

• Identify clever solutions to basic problems – they often are useful in 

many applications 

• Don’t make the same mistake twice !

The problem:

The perceived solution:

The practical or clever solution:

The List Keeper !

The List !

Reminder !!



Types of Capacitors

1. Fixed Capacitors

a.   Fixed Geometry

b.    Junction

2.    Operating Region Dependent

a.   Fixed Geometry

b.    Junction



Parasitic Capacitors in 

MOSFET
Fixed Capacitors



Parasitic Capacitors in 

MOSFET
Fixed Capacitors

Overlap Capacitors:  CGDO, CGSO

CGDO
CGSO



Fixed Parasitic Capacitance 

Summary

Cutoff Ohmic Saturation

CGS CoxWLD CoxWLD CoxWLD

CGD CoxWLD CoxWLD CoxWLD

D

S

G B

CGS

CGD

LD is a model parameter



Parasitic Capacitors in MOSFET

Fixed Capacitors

CBS1 CBD1

Junction Capacitors: CBS1, CBD1



Parasitic Capacitors in MOSFET
Fixed Capacitors

Overlap Capacitors:  CGDO, CGSO

CGDOCGSO

CBS1
CBD1

Junction Capacitors: CBS1, CBD1



Fixed Parasitic Capacitance 

Summary
D

S

G B

CGS

CGD

CBS

CBD

Cutoff Ohmic Saturation

CGS CoxWLD CoxWLD CoxWLD

CGD CoxWLD CoxWLD CoxWLD

CBG   

CBS CBS1 = CBOTAS+CSWPS CBS1 = CBOTAS+CSWPS CBS1 = CBOTAS+CSWPS

CBD CBD1 = CBOTAD+CSWPD CBD1 = CBOTAD+CSWPD CBD1 = CBOTAD+CSWPD

CBOT and CSW are  model parameters



Parasitic Capacitors in 

MOSFET
Operation Region Dependent



Parasitic Capacitors in MOSFET

Operation Region Dependent  -- Cutoff

CGBCO

Cutoff Capacitor: CGBCO



Parasitic Capacitors in MOSFET

Operation Region Dependent  -- Cutoff

CGBCO

Cutoff Capacitor: CGBCO

Note:  A depletion region will form under the gate if a positive

Gate voltage is applied thus decreasing the capacitance density



Parasitic Capacitors in MOSFET

Operation Region Dependent and Fixed -- Cutoff

Overlap Capacitors:  CGDO, CGSO

Junction Capacitors: CBS1, CBD1

CGDOCGSO

CBS1
CBD1

CGBCO

Cutoff Capacitor: CGBCO



Parasitic Capacitance Summary
D

S

G B

CGS

CGD

CBS

CBD

CBG

Cutoff Ohmic Saturation

CGS CoxWLD CoxWLD CoxWLD

CGD CoxWLD CoxWLD CoxWLD

CBG CoxWL (or less)

CBS CBOTAS+CSWPS CBS1 = CBOTAS+CSWPS CBS1 = CBOTAS+CSWPS

CBD CBOTAD+CSWPD CBD1 = CBOTAD+CSWPD CBD1 = CBOTAD+CSWPD



Parasitic Capacitors in MOSFET

Operation Region Dependent  -- Ohmic

Ohmic Capacitor: CGCH , CBCH

CBCH

Note:  The Channel is not a node in the lumped device model so can not 

directly include this distributed capacitance in existing  models

Note:  The distributed channel capacitance is usually lumped

and split evenly between the source and drain nodes

CGCH



Parasitic Capacitors in MOSFET

Operation Region Dependent and Fixed  -- Ohmic

Overlap Capacitors:  CGDO, CGSO

Junction Capacitors: CBS1, CBD1

Ohmic Capacitor: CGCH , CBCH

CGDO

CGSO

CBS1

CBD1

CGCH

CBCH



Parasitic Capacitance Summary

D

S

G B

CGS

CGD

CBS

CBD

CBG

Cutoff Ohmic Saturation

CGS CoxWLD CoxWLD CoxWLD

CGD CoxWLD CoxWLD CoxWLD

CBG CoxWL (or less)

CBS CBOTAS+CSWPS CBS1 = CBOTAS+CSWPS CBS1 = CBOTAS+CSWPS

CBD CBOTAD+CSWPD CBD1 = CBOTAD+CSWPD CBD1 = CBOTAD+CSWPD



Parasitic Capacitors in MOSFET

Operation Region Dependent  -- Saturation

Saturation Capacitors: CGCH , CBCH

CGCH

CBCH

Note:  Since the channel is an extension of the source when in saturation, the 

distributed capacitors to the channel are generally lumped to the source node



Parasitic Capacitors in MOSFET

Operation Region Dependent and Fixed --Saturation

Overlap Capacitors:  CGDO, CGSO

Junction Capacitors: CBS1, CBD1

CGDOCGSO

CBS1 CBD1

Saturation Capacitors: CGCH , CBCH

CBCH

CGCH



Parasitic Capacitance 

Summary
D

S

G B

CGS

CGD

CBS

CBD

CBG

Cutoff Ohmic Saturation

CGS CoxWLD CoxWLD + 0.5COXWL CoxWLD+(2/3)COXWL

CGD CoxWLD CoxWLD + 0.5COXWL CoxWLD

CBG CoxWL (or less) 0 0

CBS CBOTAS+CSWPS CBOTAS+CSWPS+0.5WLCBOTCH CBOTAS+CSWPS +(2/3)WLCBOTCH

CBD CBOTAD+CSWPD CBOTAD+CSWPD+0.5WLCBOTCH CBOTAD+CSWPD



Parasitic Capacitance Summary
D

S

G B

CGS

CGD

CBS

CBD

CBG

Cutoff Ohmic Saturation

CGS CoxWLD CoxWLD + 0.5COXWL CoxWLD+(2/3)COXWL

CGD CoxWLD CoxWLD + 0.5COXWL CoxWLD

CBG CoxWL (or less) 0 0

CBS CBOTAS+CSWPS CBOTAS+CSWPS+0.5WLCBOTCH CBOTAS+CSWPS +(2/3)WLCBOTCH

CBD CBOTAD+CSWPD CBOTAD+CSWPD+0.5WLCBOTCH CBOTAD+CSWPD



R-String DAC 

b3 b3 b2 b2 b1 b1

R-String

VREF

XIN

n

Decoder

VOUT

MUX Decoder  (Analog MUX)

Tree-Decoder Layout/Architecture 

Each intersection is a reserved site for a switch 



Uncontacted Row-Column Structure

bm bm

Vk



Row-Column Structure with Contacts Added

Programmed entirely with the contact mask

bm bm

Vk

OR

bm bm

Vk



R-String DAC 

b3 b3 b2 b2 b1 b1

R-String

VREF

XIN

n

Decoder

VOUT

MUX Decoder

Parasitic Capacitances in MUX Decoder
(for convenience have not shown non-contacted transistor effects)



R-String DAC 

Previous-Code Dependent Settling

b3 b3 b2 b2 b1 b1

R-String

VREF

XIN

n

Decoder

VOUT

MUX Decoder

< 0 1 0 >

Example:

V3

Assume all C’s initially with 0V

Red denotes V3, black denotes 0V, Purple some other voltage



R-String DAC 

Previous-Code Dependent Settling
Assume all C’s initially with 0V

Red denotes V3, green denotes V6, black denotes 0V, Purple some other voltage

b3 b3 b2 b2 b1 b1

R-String

VREF

XIN

n

Decoder

VOUT

MUX Decoder

< 1 0 1 >

Example:

V3

V6

Transition from <010>  to <101>



R-String DAC 

Previous-Code Dependent Settling
Assume all C’s initially with 0V

Red denotes V3, green denotes V6, black denotes 0V, Purple some other voltage

Transition from <010>  to <101>

b3 b3 b2 b2 b1 b1

R-String

VREF

XIN

n

Decoder

VOUT

MUX Decoder

< 1 0 1 >

Example:

V3

V6

White boxes show capacitors dependent 

upon previous code <010>



R-String DAC 

Tree-Decoder in Digital Domain

b3 b3 b2 b2 b1 b1

Decoder

MUX Decoder

VDD
VOUT

Do the resistors  that form part of PTL dissipate any substantial power?

No because only one will be conducting for any DAC output

Single transistor used at each marked intersection to form PTL -AND gates



R-String DAC 

b1 b1 b2 b2 b3 b3

R-String

VREF

XIN

n

Decoder

VOUT

Tree Decoder

Analog MUX with Tree Decoder













What is the INL performance of this DAC?

ENOB?

What is the spectral performance?

The DAC 8560



R-String DAC 
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R-String DAC 
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Sometimes termed sub-divider, 

sub-range  or dual-string DAC



R-String DAC 
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R-String DAC 
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R-String DAC 
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Stay Safe and Stay Healthy !



End of Lecture 32


